MAGNETISM ON THE NANO SCALE

MAGNETIC FORCE (MFM) AND SCANNING HALL PROBE MICROSCOPY (SHPM)

Magnetic imaging on small length scales has long been an important asset in fundamental research of various magnetic materials and superconductors. Spearheaded by Bitter decoration in the 1960’s, magnetic imaging is nowadays ruled by much more sophisticated techniques such as Magnetic Force Microscopy (MFM) and Scanning Probe Microscopy (SHPM). With its attoMFM I and attoSHPM, attocube systems addresses both of these techniques - allowing the researcher to investigate magnetic properties with unrivalled spatial resolution and field sensitivity in environments ranging from ultra-low temperature and high magnetic fields to ambient conditions.

Historically, the Magnetic Force Microscope (MFM) has been derived from the Atomic Force Microscope (AFM) one year after its invention in 1986. Unlike AFM, MFM uses a magnetic tip to measure long-range magnetic tip-sample interaction forces and is typically operated with a tip-sample separation ranging from 10-100 nm. In dual-pass mode, the tip is first scanned over the surface in close proximity and then retracted to a distance where the roughness of the sample surface is small compared to the tip-sample separation. For non-flat surfaces, or for cases where the constant height mode is restricted to tip-sample separations ranging from 10-100 nm, the dual-pass mode is superior to the existing compound, allowing the combination of these techniques.

There are two distinct modes of operation for an MFM: in constant height mode, the tip is scanned over the sample at a certain elevation. During the scan, the MFM is typically operated in amplitude mode, i.e. the cantilever is excited with constant frequency ω_0 and amplitude a_0. The phase-shift measured between excitation source and cantilever then reflects the magnetic field gradient. Constant height mode is restricted to cases where the roughness of the sample surface is small compared to the tip-sample separation, for non-flat surfaces, or for cases where the tip needs to be scanned relatively close to the surface, the dual-pass mode is superior to the constant height mode. In dual-pass mode, the tip is first scanned over the surface in close proximity and then retracted by a predefined amount. In a second scan pass, the tip follows the recorded surface topography at constant separation and the phase (or frequency) shift due to magnetic interaction forces is recorded. To avoid problems associated with drift, dual-pass mode is executed in a line-by-line fashion.

With the MFM, a lateral resolution below 50 nm is routinely observed. Under right conditions, however, a resolution of down to 11 nm has already been demonstrated* (see next page). Compared to other magnetic imaging techniques such as MFM or scanning-SQUID, the Scanning Hall Probe Microscope (SHPM) is the only microscope capable of providing a non-invasive, quantitative information of the local magnetic field of a sample while yielding a sub-µm lateral resolution. Historically, SHPM is available since the late 1970s, when semiconductor Hall sensors with a two dimensional electron gas layer (2DEG) could be manufactured by modulation doping. This invention increased electron carrier mobilities to values far greater than in any other existing compound, allowing the combination of high field sensitivity with high spatial resolution – even at low temperature.

Today, the SHPM is a standard tool for the investigation of magnetic properties of a sample at both room and low temperature and is particularly, but not only, used for the investigation of superconducting materials. In a typical experiment, the Hall sensor is approached to close proximity to the sample surface and then scanned across the sample by means of a dedicated scanner. Measuring the Hall-Voltage during this process directly yields the local magnetic field, which can be recorded and displayed in two or even three dimensions. For the operation of an SHPM, a mechanism to detect the location of the sample surface with respect to the Hall sensor is necessary, which is typically achieved by either measuring a tunneling current (STM-tracking SHPM) or by measuring long-range attractive forces between Hall sensor and sample (Tuning Fork-tracking SHPM). The highest-quality Hall Sensors for low temperature operation existing today are made from a GaAs/AlGaAs heterostructure, created by a molecular-beam-epitaxy (MBE) growth process. attocube systems currently offers these kind of sensors with high and ultra-high resolution technology, yielding 500 nm and 100 nm spatial resolution. The thermodynamic noise limit of attocube’s sensors is typically 15 nT/Hz$^{1/2}$ at 4 K and 80 nT/Hz$^{1/2}$ at 77 K, while the practically attainable magnetic field resolution is limited to 1x10$^{-15}$ Φ0 in a typical experiment, where Φ0 is the magnetic flux quantum (2.06×10^{-15} Wb).

*attocube application labs 2009. MFM on NiFe pads in dual-pass mode with 20 nm tip-sample separation.
The attoMFM I is a compact magnetic force microscope designed particularly for applications at low and ultra low temperature. Based on a conventional atomic force microscope, the instrument works by scanning the sample below a fixed magnetic cantilever. The magnetic force gradient acting on the tip is then determined by measuring the change in resonance frequency (FM mode) or phase of the cantilever (AM mode) with highest precision using a fiber-based optical interferometer. Both measurement techniques are applied at a certain tip-sample distance, typically around 10 - 100 nm. In FM mode, a phase-locked loop (PLL) is used to excite the cantilever at resonance.

The attoMFM I has been designed in such a way that changes in temperature or magnetic field have only minimal influence on the tip position with respect to the sample, allowing measurements in variable environmental conditions. As a further plus, the attoMFM I is fully compatible with all commercially available cantilevers.

APPLICATION EXAMPLES
- Investigation of superconductors
- Domain structure studies
- Vortex dynamics
- Materials science

PRODUCT KEY FEATURES
- Ultra compact MFM head
- Highly sensitive interferometric deflection detection
- Unrivaled stability allowing ultra high resolution imaging
- Optical inspection of sample / tip via CCD camera
- Adjustment of the cantilever outside the cryostat prior to cooling down the microscope

BENEFITS
- High spatial resolution imaging
- Simultaneous ultra high resolution topographic and magnetic force imaging
- Compatible with any commercially available MFM probe

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Mode</td>
<td>Feedback imaging modes (PLL feedback loop with additional PLL for contact mode, non-contact mode, AFM, MFM, EFM, SGM, ...)</td>
</tr>
<tr>
<td>Sample Positioning</td>
<td>Coarse range, step size, fine scan range, temperature range: 5 x 5 x 5 mm³ @ 300 K: 0.05 ... 3 µm, 40 x 40 x 24 µm, @ 4 K: 10 ... 500 nm, 30 x 30 x 15 µm, mK ... 300 K (dependent on cryostat)</td>
</tr>
<tr>
<td>Operating Conditions</td>
<td>Magnetic field range, operating pressure: 0 ... 15 T (dependent on magnet), 16-60 mbar...1 bar (designed for exchange gas atmosphere)</td>
</tr>
<tr>
<td>Noise</td>
<td>Measured RMS z-noise (contact mode: 4 K, 5 ms int. time: deflection noise density: measured force noise (0.2 N/m): 0.12 nm (guaranteed), 0.05 nm (expected), 0.5 pm/Hz 1/2 (dependent on laser system), < 100 pH in a 1 kHz bandwidth</td>
</tr>
<tr>
<td>Resolution</td>
<td>Lateral magnetic resolution control electronics: 16 bit over selected scan range (virtually unlimited bit resolution), 0.61 nm at 40 µm scan range, 0.36 nm at 15 µm scan range, 0.46 nm at 30 µm scan range, 0.23 nm at 15 µm scan range</td>
</tr>
<tr>
<td>Sample Size</td>
<td>Maximum: 10 x 10 x 5 mm³</td>
</tr>
</tbody>
</table>

*Sample courtesy of K. Bouzehouane, Thales/ENRS, Paris
The attoSHPM is a compact scanning Hall probe microscope, designed particularly for operation at low temperature and high magnetic fields. At the heart of the attoSHPM, a molecular beam epitaxy (MBE) grown GaAs/AlGaAs Hall sensor measures magnetic fields with unrivalled sensitivity. Local measurements of the magnetization of a sample are obtained by scanning the sample underneath the Hall sensor and simultaneously recording the Hall voltage, directly yielding the local magnetic field. While other local probes may outperform the Hall sensor with respect to its lateral resolution, its ability to non-invasively obtain quantitative values for the local magnetic field makes the Hall sensor a unique tool for the study of superconductors and magnetic materials.

Principle - The microscope uses a set of xyz-positioners for coarse positioning of the sample over a range of several mm. The scanning motion of the sample is provided by an attocube piezo scanner, yielding a scan range of up to 30 x 30 µm² at 4.2 K. The adjustment of the Hall sensor is performed outside of the cryostat prior to cooling the microscope. The exceptional combination of materials allows absolutely stable high resolution imaging of surfaces and local magnetic fields.

Specifications

<table>
<thead>
<tr>
<th>Operation Mode</th>
<th>feedback Imaging modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Positioning</td>
<td>coarse range step size scan range temperature range</td>
</tr>
<tr>
<td>Operating Conditions</td>
<td>magnetic field range operating pressure</td>
</tr>
<tr>
<td>Resolution</td>
<td>control electronics lateral (xy) bit resolution at 300 K z bit resolution at 300 K</td>
</tr>
<tr>
<td></td>
<td>lateral (xy) bit resolution at 4 K z bit resolution at 4 K</td>
</tr>
<tr>
<td>Hall Sensor</td>
<td>design spatial resolution field sensitivity noise-equivalent magnetic field attainable field detection limit</td>
</tr>
<tr>
<td>Sample Size</td>
<td>maximum</td>
</tr>
</tbody>
</table>

Results

04. SHPM Image of BaFeO₃ recorded at 4.2 K in constant height mode. The color scale spans 10 mT (black to yellow), while the field detection limit of this measurement is 20 μT.

05. Close-up of the MBE grown SHPM chip, showing its Hall-sensor/STM leads and the bond wires for electrical connection to the chip carrier. The Hall sensors are available as high resolution and ultra-high resolution versions, featuring a spatial resolution of 500 nm and 300 nm, respectively.
The ASC500 is a modular and flexible digital SPM controller which combines state-of-the-art hardware with innovative software architecture, offering superior performance and an unprecedented variety of control concepts. The ASC500 controller was developed with the goal to never be the limiting factor in any SPM experiment. All desirable functions and high-end specifications for conducting the experiment of your choice in MFM, SHPM, AFM, CFM, SNOM, STM, and many more are available.

Are you missing the sensitive adjustment possibilities provided by former analog SPM-units? Every ASC500 can be equipped with the ASC-iBox unit allowing fast and controlled manual adjustment of all major parameters. Now you are able to combine the advantages of manual and software control of your experiments.

State-of-the-art controller (ASC500)

Scan engine:

The ASC500 uses a dedicated hardware with a 5 MHz scan generator, creating the scan voltages necessary for any Scanning Probe Microscope. The 16 bits of the xy outputs are always automatically mapped to the actual scan field, yielding a virtually unlimited bit resolution.

Z controller:

The z scanner output is controlled by a digital PI algorithm with a bandwidth of 50 kHz. The z output DAC has a resolution of 18 bit, yielding a 4 pm resolution on a 1 µm scan range. This resolution can be increased to a theoretical value of 60 attometer by limiting the control range.

PLL:

A fully digital phase locked loop (PLL) is implemented into the ASC500, taking advantage of the high frequency inputs/outputs with 50 MHz bandwidth. A high-speed lock-in demodulator and two PI control loops are used to control the amplitude of an oscillator (e.g. cantilever or tuning fork) and to follow any shifts in resonance. The frequency resolution is below 0.2 µHz in a range of 1 kHz up to 2 MHz.

Q control:

The ASC500 provides full control over the quality factor of any driven resonator system by means of electronic Q control. The natural Q factor of the resonator can be varied by typically more than one order of magnitude in each direction (increase/decrease).

LabVIEW™ control

The new LabVIEW™ interface provides full control over all ASC500 functions. Benefits are: measurement automation, user definable experiments, and easy implementation of 3rd party instrumentation.

Spectroscopy

The ASC500 features advanced spectroscopy techniques such as z spectroscopy and bias voltage spectroscopy. These measurements are supported by an internal lock-in amplifier and a limiter functionality which drastically reduces the likelihood of a tip crash. Spectroscopy measurements can be automati- cally triggered on line, grid, or point-by-point paths. Combinations of spectroscopies can be defined in action lists.
0.5 µm
1 µm
0.5 µm

Hexagonal vortex lattice in optimum doped Bi-2212 at a temperature of 4.1 K and a magnetic field of 45 Gauss. The image shows unprocessed, as-measured MFM phase data recorded at 70 nm constant height (attocube application labs, 2009; sample courtesy of R. Kramer, Leuven University, Belgium).

Disordered vortex lattice in the iron pnictide Ba$_{1-x}$K$_x$Fe$_2$As$_2$ at a temperature of 4.1 K and a magnetic field of 45 Gauss. The image shows unprocessed, as-measured MFM phase data recorded at 70 nm constant height (attocube application labs, 2009; sample courtesy of Hai-Hu Wen, Chinese Academy of Science, Institute of Physics, Beijing, Republic of China).

The ANC250 is a dedicated, ultra low noise scan voltage amplifier for use in cryogenic instruments. In addition to the low noise performance, the ANC250 offers the lowest noise phase noise of any amplifiers on the market. Its three input channels drive five bipolar output channels with an amplification of ±20. The output voltages (x+, y+, y-, z) of up to +/-200 V are ideally suited to drive piezo tube scanners.

Switching between CFM, AFM, MFM, and SNOM is now only a matter of minutes — simply interchange the respective sensor head. The housings feature two different diameter models: the standard 2 inch version for small sized low temperature systems, including the QD PPMS® and LTSYS systems and a 1 inch version to fit into most of the unprocessed, as-measured MFM phase data recorded at 70 nm constant height (attocube application labs, 2009; sample courtesy of Hai-Hu Wen, Chinese Academy of Science, Institute of Physics, Beijing, Republic of China).

Magnetic phase image of a BaFeO sample at ambient conditions. (attocube application labs, 2009; sample courtesy of R. Kramer, Leuven University, Belgium).

Disordered vortex lattice in the iron pnictide Ba$_{1-x}$K$_x$Fe$_2$As$_2$ at a temperature of 4.1 K and a magnetic field of 45 Gauss. The image shows unprocessed, as-measured MFM phase data recorded at 70 nm constant height (attocube application labs, 2009; sample courtesy of Hai-Hu Wen, Chinese Academy of Science, Institute of Physics, Beijing, Republic of China).

Contrast in transmission spectroscopy of a single quantum dot revealed by magnetic fields (attocube application labs, 2009; sample courtesy of R. Kramer, Leuven University, Belgium).

The nonlinear Fano effect

Demonstration of an ultrasensitive optical-electronic detector in a cryogenic cavity

Optical tuning of a single hole spin in a quantum dot

The nonsuperparamagnetic effect

M. Kroner, C. Loo, S. Seidl, A.M. Holleitner, K. Karrai, A. Badolato, P.M. Petroff, R.J. Warburton

Aliasing and an admixture from a charged excitation

M. Ediger, G. Bester, A. Badolato, P.M. Petroff, K. Karrai, A. Zunger, R.J. Warburton

Peculiar many-body effects revealed in the spectroscopy of highly charged quantum dots

B.D. Gerardot, S. Seidl, P.A. Dalginer, R.J. Warburton, M. Kroner, K. Karrai, A. Badolato, P.M. Petroff

Continuous and transmission spectroscopy of a single quantum dot

T. Faurne, C. Metzger, S. Camerer, D. König, H. Lorenz, J.P. Kotthaus, K. Karrai, A. Babinski

Demonstration of an ultrasensitive optical-electronic detector in a cryogenic cavity

Nonlinear Fano effect

Demonstration of an ultrasensitive optical-electronic detector in a cryogenic cavity

Optical tuning of a single hole spin in a quantum dot

The nonsuperparamagnetic effect

M. Kroner, C. Loo, S. Seidl, A.M. Holleitner, K. Karrai, A. Badolato, P.M. Petroff, R.J. Warburton

Aliasing and an admixture from a charged excitation

M. Ediger, G. Bester, A. Badolato, P.M. Petroff, K. Karrai, A. Zunger, R.J. Warburton

Peculiar many-body effects revealed in the spectroscopy of highly charged quantum dots

B.D. Gerardot, S. Seidl, P.A. Dalginer, R.J. Warburton, M. Kroner, K. Karrai, A. Badolato, P.M. Petroff

Continuous and transmission spectroscopy of a single quantum dot

T. Faurne, C. Metzger, S. Camerer, D. König, H. Lorenz, J.P. Kotthaus, K. Karrai, A. Babinski

Demonstration of an ultrasensitive optical-electronic detector in a cryogenic cavity

Nonlinear Fano effect
LOW TEMPERATURE
SCANNING PROBE MICROSCOPES

Magnetic Force and Scanning Hall Probe Microscopes

attoMFM/SHPM